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Automata Simulating Quantum Logics 

A. A. Grib ~ and R. R. Zapatrin 2 

Received August 8, 1988 

The idea of computational complementarity is developed further. A special class 
of macroscopic automata to imitate quantum and classical systems is described. 
The simplest automaton imitating a spin-l/2 particle is completely considered. 

1. INTRODUCTION 

Niels Bohr was the first to think that the discovery of quantum 
mechanics was something more than that of new laws of microphysics; it 
was a new point of view which could be useful in different areas, for 
example, biology or economics. 

The aim of this paper is to find some examples which have nothing to 
do with microphysics but use the same mathematical formalism as quantum 
mechanics. These examples can be found in economics, sociology, and 
theory of automata. The possibility of constructing macroscopic automata 
imitating quantum systems is very important for the general problem of 
imitating the modeling of microphysical processes and constructing special 
computers for this aim. 

The main idea is to find "different representations" of quantum logics. 
By quantum logic we mean, following Birkhoff and von Neumann (1936), 
some nondistributive lattice which corresponds on one hand to some quan- 
tum microsystem and on the other to some classical system. D. Finkelstein 
was the first to see the correspondence between quantum lattices and graphs 
(Finkelstein and Finkelstein, 1983) which makes it possible to find macro- 
scopic realizations of quantum logics. To illustrate the idea, consider a very 
simple quantum system: a particle with spin one-half which is described 
by two projections of spin Sz and S~. The lattice of properties of this particle 
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is an orthomodular  nondistributive lattice: 

To this lattice there corresponds the graph (Finkelstein and Finkelstein, 
1983). 

or, briefly, 

( 

) 

) 

) 
Now consider the opposite question: in what sense does the nondis- 

tributive lattice correspond to the graph? Let 1, 2, 3, 4 be states of  some 
system (e.g., an economic one) and suppose that there is an observer who 
tries to check the state of  the system by putting questions to it. The system 
has the following property: it can answer "yes"  to the question "are you 
in 2" not only if it is in 2, but also if it is in 1 or 3. It can change its state 
by one step responding to the question if and only if corresponding states 
are connected by an arc. But let the observer be clever enough to know this 
property of  the system: then he must use some "negative logics." He 
concludes that the system is in 2 if to the question "are you in 4?" a negative 
answer is obtained. So by a negative answer to a complementary question 
he can know the real state of  the system. But then it is easy to see that one 
can find no such questions the negative answer to which corresponds to 
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the state "1 or 2," "2 or 3," and so on. This means that in our "negative 
logics," "1 or 2" coincides with l " a n y  state." One cannot find any difference 
between disjunctions 1 v 2, 2 v 3, 3 V 4, 1 v 4, and I. That is why the lattice is 
nondistributive. 1 v 2 is true if I is true, 1 v 2 is true if 2 is true, but not only 
if: 1 v 2 can be true when both 1 and 2 are false. 

It is easy to see that our observer cannot use probability theory for the 
system he controls, because there is no probability measure for a nondis- 
tributive lattice. For example, in the symmetrical case, the probability of 
each state must be 1/4. But because 1 v 2 = I, the probability of  1 v 2 must 
be equal to 1, but it is equal to 1 /4+  1/4 = 1/2. In the following sections 
we give some rigorous results for constructing macroscopic realizations of  
quantum logics. 

Nevertheless we must make an important remark. Surely we agree with 
Jauch (1968) and D'Espagnat (1976) that quantum logics do not represent 
an alternative to the Copenhagen interpretation and there are properties of 
composite systems inconsistent with Bell's inequalities. These properties 
cannot be imitated by usual physical processes in macrosystems. Now, we 
have no clear answer to whether the violation of  Bell's inequalities is an 
obstacle that prevents the imitation of all quantum properties by macro- 
scopic automata. Here our aim is more modest: to imitate only some 
quantum properties. 

2. NORMALIZED AUTOMATA AND THEIR LATTICES 

Consider first a classical system with a finite number of states. Let us 
represent it as fully disconnected graph: 

�9 �9 . . .  �9 

1 2 N 

In this case the set 1, 2 , . . . ,  N is a phase space of the system. The 
Boolean lattice 2 N of all subsets of the phase space is a property lattice of 
the system, which can be built step by step: 

Ground story: empty set Q. 
First story: consists of singletons 1 , . . . ,  N. 
Second story: consists of  two-element sets 12; 13 ; . . .  ; N - 1 ,  N. 

Nth  story: the set 1, 2 , . . . ,  N itself. 

The lattice is self-dual: if one turns it over and exchanges each element 
by its complement to 1, 2 , . , . ,  N, we again obtain the same lattice 2 N. 

For imitating classical and quantum systems we shall use normalized 
automata. 
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Definition. A normalized automaton A is an automaton defined by a 
nonoriented graph G so that: 

1. The set of  input symbols and the set of  interior states of A coincide 
with V(G) ,  the set of  vertices of  the graph. 

2. The transition function is defined in the following way. If  the 
automaton is initially in the state i and the input symbol is j, then, if the 
vertices i and j are adjacent, i.e., connected with an arc, the new state will 
be j, and if  they are not connected, it stops its work: 

j if  (i , j)  ~ Arc(G) (set of  arcs of  G) 

( i , j )  = STOP otherwise 

Each vertex is by definition adjacent to itself: the graph is reflexive. 
To each nonoriented graph considered as a normalized automaton we 

can put into correspondence a lattice of  its observed properties by the 
following algorithm: 

1. At the foundation: the empty set. 
2. The first story consists of  stars of  each vertex. The star [i] of  a 

vertex i is the set of  all vertices adjacent to i, 
3. Then construct all set-theoretic unions of  stars. 
4. Now turn the obtained lattice over and exchange each element by 

its set-theoretic complement. 

This algorithm is a simplification of  that proposed in Finkelstein and 
Finkelstein (1983) for the case of  normalized automata. Now consider some 
examples. 

Example 1. Nonconnected graph with N vertices. As was shown above, 
it generates a Boolean lattice 2 rr 

Example 2. Measurement of  two projections of  spin 1/2 (see Figure 1). 

Fig. 1. The graph generating the lattice M4. Ground story, 0. 

The first story consists o f  four elements: stars of  vertices 1-4: [ 1] = 124, 
[2] = 123, [3] = 234, [4] = 134. 
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The union of any two elements of first story gives the set V(G) = 1234; 
thus, the lattice has the form 

1234 

124 123 234 134 

Turn it over, 

124 123 234 134 

Replace each element by its complement, 

2 3 

This lattice is not distributive but modular: 1 A (2 V 3) ~ (1 A 2) V (1 A 3). 

Example 3. A graph generating Gudder 's  (1983) quark model lattice: 

Ground story: Q. 
First story: 

[1] = 1456, 

[4] = 1234, 

[2]=2456, 

[5]= 1235, 

[3] = 3456 

[61 = 1236 
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The lattice of unions has the form 

12456 . ~  13456 ~ 23456 1234 
12345 _ 12346 .~ .. 123~6 

14~6"" "2456  / ~3~56  / ~ ' ~  1 2 3 5 ~ "  1236 

Turn it over and replace its elements by complements: 

I I X  
3 2 1 6 5 4 

The lattice is also not distributive but modular: 1 A (2 v 6) ~ (1 ^ 2) v 
(1 A6), but 1 A (2V3) = (1 ^ 2) v (1 A3). 

Example 4. Nonmodular lattices can also be obtained. Consider the 
graph 

Its stars are [1]---12, [2] = 123, [3]=234, [4] =345, [5] =45. The union 
lattice is 

12345 

12 

2345 

45 

/ 
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The property lattice is  j1234,  
345 123 

45 12 

I I 
5 3 1 

In conclusion, we adduce two theorems allowing us to construct new 
lattices from given ones. 

Let G~, G2 be two arbitrary graphs and L(G1), L(G2) their property 
lattices constructed in accordance with the algorithm described above. 

Theorem 1. If G is a graph obtained by placing together two graphs 
Ga and G2, 

G =  GI + G2 

then L ( G )  = L(G~) x L(G2), a lattice product (Birkhoff, 1967). 

Theorem 2. If G is a bunch of G1 and G2, i.e., each vertex of G~ is 
connected by an arc with each vertex of G2, 

G =  GI A G2 

then L ( G )  = L(G~) + L(G2), a horizontal sum (Birkhoff, 1967). 

The proof of Theorems 1 and 2 is in Zapatrin (1988). 

Remark. The algorithm cited above for constructing the lattice by a 
graph can be reversed. In this case, for a given finite lattice one can built 
the graph generating this lattice (Zapatrin, 1988). 

3. LOGICAL DESCRIPTION OF S P I N - l / 2  PARTICLE 

Consider the graph of Figure 2. Its vertices correspond to the following 
questions: 

1: "Sx = +1/27" 4: "S~ = -1,/27" 
2: '%  =+1/27" 5: "sy =-1/27" 
3: " S z = + l / 2 ?  '' 6: "S~ . . . .  1/2?" 
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Fig. 2. Complete graph for spin-l/2 particle. 

In  the  usua l  H i lbe r t  space  fo rma l i sm  these  ques t ions  c o r r e s p o n d  to 
p ro j ec to r s  on to  the  state vectors :  

e 2 = ] y + ) = l / x / 2 ( i l )  

e4=lx - - )= l / x /~ (1_1)  

e6=z  

(3.1) 

Let  us now desc r ibe  pu re  s tates  in t e rms  o f  weights  on the graph .  To 
any  uni t  vec to r  4' e C 2 we shal l  pu t  in to  c o r r e s p o n d e n c e  a set o f  weights  
a~. The  phys i ca l  m e a n i n g  o f  a~ is the  p r o b a b i l i t y  o f  an  aff irmative answer  
to a ques t ion  c o r r e s p o n d i n g  to the  ver tex  a. Thus,  as  = IP~4'l 2. In  deta i l ,  i f  

/'1 r~ + = 1 e 

4' = r2 eie>2/I ' 
1.22 

then ,  d e n o t i n g  ~b~2 = ~b2 - ~bl, 

a~ = 1/2 + rlr2 cos ~b~2 

a2 = 1 / 2 +  rtr2 sin ~b12 

a3 ~ / . 2  

a4 = 1 / 2 - r l r 2  cos ~b12 

a5 = 1/2 - rlr 2 sin ~12 

2 
a 6 : r 2 

(3.2) 
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Since (3.2) contain only differences of  the phases ~b2-ffl, the state 
vector can be restored only up to a phase multiple, 

For two given pure states 

0 = r2 ei~'2] ' ~b = s2 e i~ 

the transition probability is 

p = t < ~ , l ~ ) l  ==  ==  == r t s l  + r2s2+2rlr2sls2 cos(~bl - 01 - ~b2+ 02) 

Let 

as = IP~,I  =, a" = IP~612, ~ = 1 , . . . ,  6 

Then, in accordance with (3.1), we obtain 

6 

P =  Y~ a~a'~-I 
c t = l  

Corollary. For any pure state the transition probability into itself is 
always 1; therefore, for any set of  weights a describing a pure state we 
always have 

6 
2 )~ a ~ = 2  (3.3) 

4. DESCRIPTION OF OBSERVABLES 

In the usual formalism the following self-adjoint operator in C 2 corre- 
sponds to an observable: 

(o 
A =  b - c i  

where a, b, c, and d are arbitrary real parameters. 
The quantum logic approach proposes to set an observable by its mean 

values in fixed pure states. In our case these are 

A~, = Tr(P~,A), ~ = 1 , . . . ,  6 

where P~ are projectors on given vectors el . . . .  , e6. 
A direct calculation yields 

2 A l  = a + 2b + d 

2 A  2 = a - 2 c +  d 

A a = a  

2 A 4 - -  a - 2b  + d 

2A5= a + 2 c + d  

A6 = d 

(4.1) 
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Thus, we can restore the parameters of  the operator by the following 
formulas: 

A1 - A4 A5 - A2 
a = A3, b 2 ' c = 2 d = A6 

The trace A of  operator  A is equal to 

A = AI + A4= A2 + A s =  A3 + A6 (4.2) 

In the traditional formalism the mean value of  A in state ~b is EA = 
(~lA[~b). In terms of  weights the calculation gives 

6 

E~A = ~ A~,a,~ - ,4 (4.3) 
o t = l  

where {a~} corresponds to state vector ~/,, ,4; see (4.2). 
Eigenvalues of  operator  A are 

A1.2= 1 /2 (A+ R)  

where R = [3,4 2 - 4(AIA4 + A2A5 + A3A6)] i/2. 
A direct calculation gives us the formula for the dispersion D~A of  

observable A: 

D~A = 1/2 ~ A 2 - 3 / 4 A  2 - (,4/2 - E~,A) 2 (4.4) 
ot 

Using the technique described above, consider two spin operators (but 
without Planck's constant) 

a = S x = l / 2 ( O  1 ; ) ,  B = l / 2 ( 0  0 i )  

Using (4.1), we obtain: 
For A: AI = 1/2; A4 = - 1 / 2 ;  other A,~ =0.  
For B: B2 = 1/2; B5 = - 1 / 2 ;  other B~ =0.  
Now consider an arbitrary state ~ given by its set of weights {a~}. In 

virtue of  (4.3) and (4.4) we have 

Er = 1/2(al  - a4), E~,B = 1/2(a2 - as) 

D~,A = al a4 D~,B = a2a5 

The mean value of  the observable Sz = 1/2(o ~ ~ in state {a~} is E = 
1/2(a3 - a 6 ) .  Now consider the expression A = D~,A. D~,B - 1/4E 2. A direct 
calculation gives A = al a4a2a5- 1/16(a3-  a6) 2. In virtue of  (3.3), A is always 
nonnegative; therefore, in any state ~, 

D~,A. D~B >- 1/4(E~,Sz) 2 (4.5) 
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which is the Heisenberg uncertainty relation without Planck's constant valid 
for any system described by the graph G (Figure 2) and the corresponding 
quantum logical lattice. 

5. C O N C L U D I N G  REMARKS 

The correspondence between quantum logical lattices and graphs and 
negative logics used in the interpretation of states of  a system described by 
graphs leads to the macroscopic realization of  quantum logics. Now we can 
construct classical automata  which behave as some quantum system and 
imitate its features. Here we have investigated only the simplest quantum 
systems. Nevertheless, we hope  that along these lines one can construct 
automata  for more complicated cases. This is very important  for computa-  
tional modeling in quantum theory. 
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